PurposeThe Deutsche Gesellschaft für Medizinische Physik [German Society of Medical Physics] has recently published two coherent reports, No. 25 and No. 28, detailing the design and implementation of a risk management (RM) process for German radiotherapy (RT) departments. This study offers an overview and background of the efforts behind these reports. Methods and MaterialsFor three years, up to nine medical physicists (MPs) with practical RM experience held weekly meetings to develop recommendations for a clinical RM process. Care was taken to ensure that the recommendations were equally applicable to RT departments of various sizes. A process-based method derived from the failure mode and effects analysis (FMEA) was created to identify and address risks from unintentional radiation exposure. This method was applied to exemplarily analyze the hazardous scenarios in breast RT using surface guidance and deep inspiration breath hold (DIBH) techniques. Three common criticality methods—risk matrix, risk priority number, and action priority—were applied, and each step was schematically explained for first-time users. Each report was peer-reviewed by two radiation oncologists and 11 MPs. ResultsIn report No. 25, basic requirements were outlined for running the RM process, conducting risk assessments, and monitoring clinical procedures. A three-year plan-do-check-act cycle was proposed for continuous improvement. In report No. 28, general process lists for external beam radiotherapy (EBRT), brachytherapy, and radionuclide therapy were designed. Based on the EBRT process list, 45 hazardous scenarios in the surface-guided breast RT in DIBH were identified. Two scenarios were used to illustrate handling instructions for the three criticality methods. ConclusionsThe recommendations provide clinical MPs and other health professionals with a pragmatic approach to RM, balancing both the needs of smaller practices and larger clinics in Germany. The risk of unintended exposures of patients is viewed acceptable once it has been lowered to a state that is as low as reasonably achievable.
Read full abstract