Given a point w in the upper half-plane Π+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Pi _{\\mathord {+}}$$\\end{document}, we describe the set of all possible values F(w) of transforms F(z):=∫[α,β](x-z)-1σ(dx)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(z)\\,{:=}\\,\\int _{[\\alpha ,\\beta ]}(x-z)^{-1}\\sigma (\ extrm{d}x)$$\\end{document}, z∈Π+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z\\in \\Pi _{\\mathord {+}}$$\\end{document}, corresponding to solutions σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sigma $$\\end{document} to a (non-degenerate) truncated matricial Hausdorff moment problem. This set turns out to be the intersection of two matrix balls the parameters of which are explicitly constructed from the given data.
Read full abstract