Abstract
We study the problem of approximating the recovery of a probability distribution on the unit interval from its first k moments. As main result we obtain an upper bound on the L1 reconstruction error under the regularity assumption that the log-density function has square-integrable derivatives up to some natural order r>1. Our bound is of order O(k−r). A comparative study relates our findings to alternative conditions on the distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.