This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp ( L ) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim ( a , b ) is equal to the effective packing dimension Dim ( a , b ), then sp ( L ) contains a unit interval. We also show that, if the dimension dim ( a , b ) is at least one, then sp ( L ) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite.