Open pit mining is based on dynamic operations within the open pit, with the haulage operation being the most decisive in terms of the cost and the overall productivity of the operation. A vital aspect for the success of the haulage operation are the conditions of the roads, which change over time due to wear and tear. The present work aims to model and to evaluate the effect of temporal deterioration affecting mining roads in an open pit mining operation through rolling resistance, using the discrete event simulation (SED) tool to evaluate two key aspects of the operation: productivity and fuel consumption. Additionally, to reverse road deterioration, the assignment of a grader with a variable frequency of use will be modeled through a parallel model. The case study is a 5 km road with a slope of 9.5%, a fleet of 10 trucks, and their capacities of 300 tons, loaded in a 24 h simulation model. The results show that not considering road deterioration can mean an overestimation of productivity of up to 600 Ton/hr, and an overconsumption of 78%. The application of a motor grader could decrease the negative effects of roads deterioration, which depends on the frequency of its assignment. The results show that for the rate of productivity and fuel consumption for every hour of frequency that the motor grader does not do road maintenance, the production loss is 600 tons, and the fuel consumption increases by approximately 1800 L in a day.
Read full abstract