This paper proposes a new effective MHS algorithm to solve numerical optimization problems. The MHS algorithm first adopt a novel self-studying strategy, which makes it easy balance the global search ability and local development ability, prevent the MHS algorithm trapped into local optimal value. besides, the harmony memory consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth distance (bw) is changed with function values dynamically, it can effectively improve the convergence speed and precision of the algorithm Based on five test functions , experiments results obtained by the MHS algorithm are better than those obtained using HS, IHS and NGHS algorithm in the literature.
Read full abstract