We study locally harmonic maps between a Riemann surface or a Lorentz surface M and a Riemann or Lorentz surface N. All four cases are written using a unified formalism. Therefore properties and solutions to the harmonic map problem can be studied in a unified way.It is known that harmonic maps between Riemannian surfaces are classified by the classification of the solutions of a sinh-Gordon equation. We extend this result to all the four cases of harmonic maps between Riemannian or pseudo-Riemannian surfaces. The calculation of the corresponding harmonic map can be calculated by the solutions of the corresponding Beltrami equations in all the cases.We study the one-soliton solutions of this equation and we find the corresponding harmonic maps in a unified way.Next, we discuss a Bäcklund transformation of the harmonic map equations that provides a connection between the solutions of two sine or sinh-Gordon type equations. Finally, we give an example of a harmonic map that is constructed by the use of a Bäcklund transformation.
Read full abstract