Abstract

We consider harmonic maps into symmetric spaces of non-compact type that are equivariant for representations that induce a free and proper action on the symmetric space. We show that under suitable non-degeneracy conditions such equivariant harmonic maps depend in a real analytic fashion on the representation they are associated to. The main tool in the proof is the construction of a family of deformation maps which are used to transform equivariant harmonic maps into maps mapping into a fixed target space so that a real analytic version of the results in [4] can be applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.