Pulse width modulation current harmonics and space harmonics are some of the major factors affecting the rotor eddy current loss of the high-speed permanent magnet motor. In this study, based on the principle of the equivalent current sheet, a two-dimensional motor model in a rectangular coordinate system was established. Considering the armature reaction, the end effect, and the current harmonics generated by variable frequency power supply, the eddy current loss of the rotor at different frequencies was analyzed and calculated using the analytical and finite element methods (FEM). When the frequency is between 200 Hz and 600 Hz, the variation trend of the rotor eddy current loss with a frequency obtained by analytical calculation and FEM analysis is roughly the same, and the error is still within a reasonable range. However, as the frequency continues to increase, the error between the two becomes larger and larger. Furthermore, based on the two-dimensional FE model, the influence of the sleeve material, the thickness, and the composite structure on the rotor eddy current loss were studied and analyzed. It was found that adding a graphene shielding layer between the permanent magnet and the sleeve can effectively shield the harmonic magnetic field, greatly reduce the eddy current loss of the permanent magnet, and effectively prevent the temperature of the permanent magnet from being too high, which is conducive to the continuous and stable operation of the high-speed permanent magnet motor.