Noise level is one of the core technical indicators of high-speed trains, especially for a speed of 400 km/h. Noise source identification and its contribution quantification are key for interior noise control. This article takes a certain high-speed train running up to 400 km/h as the research object. Firstly, based on the interior noise spectrum and experimental results of source identification based on spherical harmonic function, the main source locations and energy distribution inside the train are determined. Secondly, through polynomial fitting, the correlation between vibration and noise in various areas inside and outside the train and speed is determined. Subsequently, by calculating the energy contribution through area integration, the noise contribution of each interior region is determined, and then the variation law of the noise contribution of each region with the speed is determined, and the quantitative contributions of various areas inside the train are given when the high-speed train is running at 400 km/h. Finally, the vibration and noise inside the train, aerodynamic noise on the train body surface, and noise in the bogie area in open lines and tunnel operating environments are compared and analyzed, as well as their variation laws with speed. The main noise sources inside the train under two types of operating environments are identified, and the contribution rates of noise sources in different areas inside the train are analyzed, further studying the interior noise and vibration transmission characteristics. The results show that, when the high-speed train is running at 400 km/h in open line operating environment, the significant frequency range of interior noise is 40 Hz ∼ 2000 Hz, and dominant interior noise sources are located in the roof and floor. In the tunnel operating environment, the significant frequency range of interior noise is 160 Hz ∼ 1000 Hz, and the primary sources of interior noise are predominantly located in the left window and floor. For the sidewall area, the interior noise comes mainly from the vibration of the inner sidewall when in open line operating environment, while in tunnel operating environment, the interior noise comes mainly from the aerodynamic excitation of the body surface.
Read full abstract