This study investigates an astrophysics-based Transit search optimization algorithm (TSOA) for solving a challenging engineering problem. This innovative strategy uses the fundamentals of physics to improve the accuracy and efficacy of problem solving techniques. Harmonic distortions in power systems have become a massive challenge because of the nonlinear loads associated with the electrical power distribution system. Overheating of the equipment, motor failure, capacitor failure, and improper power metering are all issues caused by harmonic distortion. A new examination of the causes and consequences of these issues, as well as the status of hardware and software available for harmonic evaluation, is necessary in light of the unprecedented advancements in power electronic devices and their integration at all levels in the power and energy system. In order to estimate phase and amplitude simultaneously with a specified frequency, an objective function of power system harmonics is created. Keeping in mind the adverse effects of harmonics, parameter estimation is carried out under various conditions by taking different particle sizes and signal-to-noise ratios. TSOA proved its efficacy for both phase and amplitude parameters under different situations and precisely estimated the harmonics signal up to an accuracy of 1.1648E–15. Two harmonic signals were taken in this research work, and the best MSE values achieved are 9.748E–4, 8.287E–07, 6.157E–10, and 1.165E–15 for 30, 60, 90, and 150 dB noise, respectively, under case study 1 while varying the particle size from 50 to 450. The results for case study 2 proved to be best up to 7.373E–16, and no significant change occurred by increasing the generations above 500. The proposed study would be a step further in developing a more accurate and robust computing platform for robust estimation of harmonics arising in power and energy systems.
Read full abstract