We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies during music perception do not rely on the integrity of primary auditory cortex; and (4) musical priming may be mediated by broadly tuned subcomponents of the thala-mocortical auditory system.
Read full abstract