Cyanobacterial harmful algal blooms release toxins and form thick blanket layers on the water surface causing widespread problems, including serious threats to human health, water ecosystem, economics, and recreation. To identify the potential drivers for the bloom, there is a need for extensive observations of the water sources with bloom occurrences. However, the traditional methods for monitoring water sources, such as collection of point ground samples, have proven limited due to spatial and temporal variability of water resources, and the cost associated with collecting samples that accurately represent this variability. These limitations can be addressed through the use of high-frequency satellite data. In this study, we explored the use of Random Forest (RF), which is one of the widely used machine learning architectures, to evaluate the performance of Sentinel-3 OLCI (Ocean and Land Color Imager) images in predicting bloom proxies in the western region of Lake Erie. The sixteen available bands of Sentinel-3 images were used as the predictor variables, while four proxies of the cyanobacterial masses, including Chlorophyll-a, Microcystin, Phycocyanin, and Secchi-depth, were considered as response variables in the RF models, with one RF model per proxy. Each of the proxies comes with a unique set of traits that can help with bloom detection. Among four RF models, the model for Chlorophyll-a performed the best with R2 = 0.55 and RMSE = 20.84 µg/L, while R2 performance for the rest of the other proxies was less than 0.5. This is because Chlorophyll-a is the most dominant and optically active pigment in water, while Phycocyanin, which is a strong indicator of harmful bloom, is present in low concentrations. Additionally, Microcystin, responsible for bloom toxicity, has limited spectral sensitivity, and Secchi-depth could be influenced by various factors besides blooms, such as colored dissolved organic and inorganic matter. On further examining the relationship between the proxies, Microcystin and Secchi-depth were significantly correlated with Chlorophyll-a, which enhances the usefulness of Chlorophyll-a in accurately identifying the presence of algal blooms.