The ability of aquatic (Juncus effusus L., Scirpus holoschoenus L., Thypha latifolia L. and Juncus sp.) and land (Cistus ladanifer L., Erica andevalensis C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus officinalis L., Cynodon dactylon L. and Hordeum murinum L.) plants from Portugal (Aljustrel, Lousal and São Domingos) and Morocco (Tighza and Zeida) mining areas to uptake, translocate and tolerate heavy metals (Cu, Zn and Pb) was evaluated. The soils (rhizosphere) of the first mining area are characterized by high acidity conditions (pH 2-5), whereas from the second area, by alkaline conditions (pH 7.0-8.5). Physicochemical parameters and mineralogy of the rhizosphere were determined from both areas. Chemical analysis of plants and the rhizosphere was carried out by inductively coupled plasma emission spectrometry. The sequential chemical extraction procedure was applied for rhizosphere samples collected from both mining areas. In the acid conditions, the aquatic plants show a high capacity for Zn bioaccumulation and translocation and less for Pb, reflecting the following metal mobility sequence: Zn > Cu > Pb. Kaolinite detected in the roots by infrared spectroscopy (IR) contributed to metal fixation (i.e. Cu), reducing its translocation to the aerial parts. Lead identified in the roots of land plants (e.g. E. andevalensis) was probably adsorbed by C-H functional groups identified by IR, being easily translocated to the aerial parts. It was found that aquatic plants are more efficient for phytostabilization than bioaccumulation. Lead is more bioavailable in the rhizosphere from Morocco mining areas due to scarcity of minerals with high adsorption ability, being absorbed and translocated by both aquatic and land plants.
Read full abstract