We report a multiwavelength analysis of an unusual high-energy transient: EXS 1737.9-2952. Due to the features this source exhibited in the hard X-ray domain similar to another source in the Galactic center region (1E1740.9 - 2952), and in order to study the molecular gas toward this X-ray source, we performed an observation of the EXS region in 1993 August, using the Swedish-ESO Submillimeter Telescope (SEST) located in La Silla (Chilean Andes). We observed a cloud, at the forbidden velocity of 135 km s-1, using 12CO (1-0) transitions, giving a maximum column density of 8 × 1021 cm-2. In 1994 we conducted other observations to search for higher density regions inside the cloud, using HCO+ and CS lines, but they were unsuccessful: we concluded that the cloud could be associated with the X-ray source and its mean density is of the order of ≈ 103 cm-3. In 1994 April, we performed a set of observations of the field containing EXS, at 20 cm and 6 cm, using the VLA in its A configuration, and found four possible radio candidates for an association with the EXS X-ray source, one of them (source 3) being extended, exhibiting a head-tail morphology, and a having a thermal spectrum with a spectral index ≈ -0.7. We reproduced our observation in 1994 November and December, using the C configuration at 6 cm, in order to investigate on possible variability and extension of these sources and found a marginal indication in the 20 cm image that source 3 may have a weak second component displaced about 15''. Nevertheless, this indication is too faint to associate this source definitely with EXS since no significant variation was detected. In addition, during the 1994 November-December observation, two more extended sources were detected but their association with EXS is unlikely. We also analyzed the Einstein/IPC image of the 5 σ EXS error box which does not exhibit, at the time of the observation, any significant low-energy X-ray counterpart to EXS. A nearby pulsar PSR 1737-30 in the ROSAT catalog is outside this error box. Finally, IRAS maps of the EXS region do not show any IR contribution at the location of the radio sources. We conclude that (1) EXS 1737.9-2952 is a high-energy transient, (2) a persistent counterpart at other wavelengths is not demonstrated, and (3) EXS, when flaring, as well as other GC gamma-ray sources, could possibly contribute to the 511 keV bulge emission.
Read full abstract