Tintinnid ciliates build loricae, whose structure, shape, and size still largely represent the basis for taxonomy and classification, although genetic analyses demonstrated their limited utility for inferring evolutionary relationships. The textures of the lorica walls, however, result from the chemical and physical properties of the forming material, which is supposed to be rather conserved in closely related taxa, viz., congeners and confamilial genera. Within a particular texture, small deviations in the chemical composition might affect the wall's stickiness and accordingly its capability to adhere foreign particles, explaining the intertwining of tintinnids with hyaline and agglutinated loricae in phylogenetic inferences. In a comprehensive comparative study, the lorica textures were electron microscopically and morphometrically analyzed in 21species from 17genera and more than nine families together with literature data. Most species were investigated for the first time, and the taxa cover a substantial portion of the molecular genealogy. The phylogeny-aware analysis of the lorica-related features provides a preliminary hypothesis on lorica evolution. Eventually, this conspectus suggests the dominance of hard lorica walls with an alveolar texture and proposes different modes of lorica formation.
Read full abstract