The vascular bundles play important roles in transportation of photoassimilate, and the number, size, and capacity of vascular bundles influence the transportation efficiency. Dissecting the genetic basis may help to make better use of naturally occurring vascular bundle variations. Here, we conducted a genome-wide association study (GWAS) of the vascular bundle variations in a worldwide collection of 529 Oryza sativa accessions. A total of 42 and 93 significant association loci were identified in the neck panicle and flag leaf, respectively. The introgression lines showing extreme values of the target traits harbored at least one GWAS signal, indicating the reliability of the GWAS loci. Based on the data of near-isogenic lines and transgenic plants, Grain number, plant height, and heading date7 (Ghd7) was identified as a major locus for the natural variation of vascular bundles in the neck panicle at the heading stage. In addition, Narrow leaf1 (NAL1) was found to influence the vascular bundles in both the neck panicle and flag leaf, and the effects of the major haplotypes of NAL1 were characterized. The loci or candidate genes identified would help to improve vascular bundle system in rice breeding.
Read full abstract