Organic–inorganic hybrid nanoflowers (hNFs) with commercial protease “Neutrase” is proposed and characterized as efficient and green biocatalysts for promiscuous catalysis in aldol-type and multicomponent reactions. Neutrase hNFs [Neutrase-(Cu/Ca/Co/Mn)3(PO4)2] are straightforwardly prepared through mixing metal ion (Cu2+, Ca2+, Co2+ or Mn2+) aqueous solutions with Neutrase in phosphate buffer (pH 7.4, 10 mM) resulting in precipitation (3 days). The hNFs were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-ray (EDX), element mapping, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In SEM images, the metal-Neutrase complexes revealed flower-like or granular structures after hybridization. The effect of metal ions and enzyme concentrations on the morphology and enzyme activity of the Neutrase-hNFs was examined. The synthesized Neutrase-Mn hNFs showed superior activity and stability compared to free Neutrase. Traditional organic CC coupling reactions such as aldol condensation, decarboxylative aldol, Knoevenagel, Hantzsch-type reactions and synthesis of 4H-pyran derivatives were used to test the generality and scope of Neutrase promiscuity, while optimizing conditions for the Neutrase-Mn hNF biocatalyst. Briefly, Neutrase-Mn3(PO4)2 hNFs showed excellent enzyme activity, stability and reusability, qualifying as effective reusable catalysts for coupling reactions under mild conditions.