Recently, El-Deeb and Cotîrlă (Mathematics 11:11234834, 2023) used the error function together with a q-convolution to introduce a new operator. By means of this operator the following class Rα,ϒλ,q(δ,η)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{R}_{\\alpha ,\\Upsilon}^{\\lambda ,q}(\\delta ,\\eta )$\\end{document} of analytic functions was studied: Rα,ϒλ,q(δ,η):={F:ℜ((1−δ+2η)Hϒλ,qF(ζ)ζ+(δ−2η)(Hϒλ,qF(ζ))′+ηζ(Hϒλ,qF(ζ))″)}>α(0≦α<1).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $$\\begin{aligned} &\\mathcal{R}_{\\alpha ,\\Upsilon }^{\\lambda ,q}(\\delta ,\\eta ) \\\\ &\\quad := \\biggl\\{ \\mathcal{ F}: {\\Re} \\biggl( (1-\\delta +2\\eta ) \\frac{\\mathcal{H}_{\\Upsilon }^{\\lambda ,q}\\mathcal{F}(\\zeta )}{\\zeta}+(\\delta -2\\eta ) \\bigl(\\mathcal{H} _{\\Upsilon}^{\\lambda ,q}\\mathcal{F}(\\zeta ) \\bigr) ^{{ \\prime}}+\\eta \\zeta \\bigl( \\mathcal{H}_{\\Upsilon}^{\\lambda ,q} \\mathcal{F}( \\zeta ) \\bigr) ^{{{\\prime \\prime}}} \\biggr) \\biggr\\} \\\\ &\\quad >\\alpha \\quad (0\\leqq \\alpha < 1). \\end{aligned}$$ \\end{document}For these general analytic functions F∈Rβ,ϒλ,q(δ,η)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{F}\\in \\mathcal{R}_{\\beta ,\\Upsilon}^{\\lambda ,q}(\\delta , \\eta )$\\end{document}, we give upper bounds for the Fekete–Szegö functional and for the second and third Hankel determinants.