Abstract

The study of holomorphic functions has been recently extended through the application of diverse techniques, among which quantum calculus stands out due to its wide-ranging applications across various scientific disciplines. In this context, we introduce a novel q-differential operator defined via the generalized binomial series, which leads to the derivation of new classes of quantum-convex (q-convex) functions. Several specific instances within these classes were explored in detail. Consequently, the boundary values of the Hankel determinants associated with these functions were analyzed. All graphical representations and computational analyses were performed using Mathematica 12.0.•These classes are defined by utilizing a new q-differential operator.•The coefficient values |ai|(i=2,3,4) are investigated.•Toeplitz determinants, such as the second T2(2) and the third T3(1) order inequalities, are calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.