Top hammer drilling is a common method to drill holes in rock formations in mining and civil engineering applications. Failure of drilling machine components has a significant impact on the cost and period of the operation. Internal components of percussive hammers experience extreme loading conditions during their service life. The focus of the present case study is to characterize failure mechanisms of two cylindrical impact pistons subjected to impact loading. The investigated components were manufactured from two different steel grades, a surface hardened low alloyed high strength steel and a through hardened cold work tool steel.Failure of both pistons started with degradation of the impact surfaces in term of cavitation erosion and localized surface fatigue phenomena. Subsequently, chipping and removal of material from impact surfaces resulted in formation of semi-spherical holes and craters on both surfaces.Radial and hoop cracks started to develop from cavities on the impact surface. The radial cracks then propagated parallel to the impacting surface in the longitudinal direction of the piston. Once the cracks formed at the impact surface, the damage was controlled by impact fatigue. Fatigue beach marks were identified on the fracture surface of failed component.