BackgroundThe symptom variability in major depressive disorder (MDD) complicates treatment assessment, necessitating a thorough understanding of MDD symptoms and potential biomarkers. MethodsIn this prospective study, we enrolled 54 MDD patients and 39 controls. Over the course of weeks 1, 2, and 4 participants underwent evaluations, with electroencephalograms (EEG) recorded at baseline and week 1. Our investigation considered five previously identified syndromal factors derived from the 17-item Hamilton Depression Rating Scale (17-item HAMD) for assessing depression: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. We assessed treatment response and EEG characteristics across all syndromal factors and total scores, all of which are based on the 17-item HAMD. To analyze the topology of brain networks, we employed functional connectivity (FC) and a graph theory-based method across various frequency bands. ResultsThe healthy control group had notably higher values in delta band EEG FC compared to the MDD patient group. Similar distinctions were observed between the responder and non-responder patient groups. Further exploration of baseline FC values across distinct syndromal factors revealed significant variations among the core, psychomotor-insight, and anorexia subgroups when using a specific graph theory-based approach, focusing on global efficiency and average clustering coefficient. LimitationsDifferent antidepressants were included in this study. Therefore, the results should be interpreted with caution. ConclusionsOur findings suggest that delta band EEG FC holds promise as a valuable predictor of antidepressant efficacy. It demonstrates an ability to adapt to individual variations in depressive symptomatology, offering insights into personalized treatment for patients with depression.
Read full abstract