Abstract Halokinetic sequences are unconformity-bound packages of thinned and folded strata adjacent to passive diapirs. Hook halokinetic sequences have narrow zones of deformation (50–200 m), >70° angular discordance, common mass-wasting deposits and abrupt facies changes. Wedge halokinetic sequences have broad zones of folding (300–1000 m), low-angle truncation and gradual facies changes. Halokinetic sequences have thicknesses and timescales equivalent to parasequence sets and stack into composite halokinetic sequences (CHS) scale-equivalent to third-order depositional cycles. Hook sequences stack into tabular CHS with sub-parallel boundaries, thin roofs and local deformation. Wedge sequences stack into tapered CHS with folded, convergent boundaries, thicker roofs and broad zones of deformation. The style is determined by the ratio of sediment-accumulation rate to diapir-rise rate: low ratios lead to tabular CHS and high ratios result in tapered CHS. Diapir-rise rate is controlled by the net differential load on deep salt and by shortening or extension. Similar styles of CHS are found in different depositional environments but the depositional response varies. CHS boundaries (unconformities) develop after prolonged periods of slow sediment accumulation and so typically fall within transgressive systems tracts in shelf settings and within highstand systems tracts in deepwater settings. Sub-aerial settings may lead to erosional unroofing of diapirs and consequent upward narrowing of halokinetic deformation zones.
Read full abstract