Eight propylene glycol substances, ranging from 1,2-propanediol to a poly(propylene glycol) (PPG) having number-average molecular weight (M(n)) of 2,700 (i.e., PPG 2700), were evaluated in the Organization for Economic Cooperation and Development (OECD) ready- and seawater biodegradability tests. Uniformity in test parameters, such as inoculum source/density and test substance concentrations, combined with frequent measurements of O2 consumption and CO2 evolution, revealed unexpected biodegradability trends across this family of substances. Biodegradability in both tests decreased with increased number of oxy-propylene repeating units (n = 1, 2, 3, 4) of the oligomeric propylene glycols (PGs). However, this trend was reversed for the PPG polymers, and increased biodegradability was observed with increases of average n to seven, 17, and 34 (M(n) = 425, 1,000, and 2,000, respectively). This relationship between molecular weight and biodegradability was reversed again when average n was incremented from 34 (PPG 2000) to 46 (PPG 2700). Six of the tested substances (n = 1, 2, 3, 7, 17, and 34) met the OECD-specified criteria for "ready biodegradability," whereas the tetrapropylene glycol (n = 4) and PPG 2700 substances failed to meet these criteria. Biodegradation half-lives for these eight substances ranged from 3.8 d (PPG 2000) to 33.2 d (PPG 2700) in the ready test, and from 13.6 (PG) to 410 d (PPG 2700) in seawater. Biodegradation half-lives in seawater were significantly correlated with half-lives determined in the ready test. However, half-lives in both tests were correlated poorly with molecular weight, water solubility, and log K(ow). It is speculated that the molecular conformation of these substances, perhaps more so than these other physicochemical properties, has an important role in influencing biodegradability of the propylene glycol substances.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access