Soybean plants form symbiotic nitrogen-fixing nodules with specific rhizobia bacteria. The root hair is the initial infection site for the symbiotic process before the nodules. Since roots and nodules grow in soil and are hard to perceive, little knowledge is available on the process of soybean root hair deformation and nodule development over time. In this study, adaptive microrhizotrons were used to observe root hairs and to investigate detailed root hair deformation and nodule formation subjected to different rhizobia densities. The result showed that the root hair curling angle increased with the increase of rhizobia density. The largest curling angle reached 268° on the 8th day after inoculation. Root hairs were not always straight, even in the uninfected group with a relatively small angle (<45°). The nodule is an organ developed after root hair curling. It was inoculated from curling root hairs and swelled in the root axis on the 15th day after inoculation, with the color changing from light (15th day) to a little dark brown (35th day). There was an error between observing the diameter and the real diameter; thus, a diameter over 1 mm was converted to the real diameter according to the relationship between the perceived diameter and the real diameter. The diameter of the nodule reached 5 mm on the 45th day. Nodule number and curling number were strongly related to rhizobia density with a correlation coefficient of determination of 0.92 and 0.93, respectively. Thus, root hair curling development could be quantified, and nodule number could be estimated through derived formulation.