A follicular wave and luteolysis were induced in mares by ablation of follicles > or =6 mm and treatment with prostaglandin F(2alpha) (PGF) on Day 10 (where ovulation = Day 0). The incidence of haemorrhagic anovulatory follicles (HAFs) in the induced waves (20%) was greater (P < 0.007) than in preceding spontaneous waves (2%). Hormone and follicle dynamics were compared between induced follicular waves that ended in ovulations (ovulating group; n = 36) v. HAFs (HAF group; n = 9). The day of the first ovulation or the beginning of HAF formation at the end of an induced wave was designated as post-treatment Day 0. The mean 13-day interval from Day 10 (PGF and ablation) to the post-treatment ovulation was normalised into Days 10 to 16, followed by Day -6 to Day 0 relative to the post-treatment ovulation. Concentrations of LH were greater (P < 0.05) in the HAF group than in the ovulating group on Days 10, 11, 12, 14, -3 and -2. The HAF group had greater (P < 0.003) LH concentrations on Day 10 of the preceding oestrous cycle with spontaneous ovulatory waves. The diameter of the largest follicle was less (P < 0.05) in the HAF group on most days between Day 13 and Day -1 and this was attributable to later (P < 0.002) emergence of the future largest follicle at 6 mm in the HAF group (Day 12.4 +/- 0.5) than in the ovulating group (Day 11.3 +/- 0.1). The results indicate that the high incidence of HAFs after PGF and ablation was associated with later follicle emergence and immediate and continuing greater LH concentration after PGF treatment, apparently augmented by an inherently high pretreatment LH concentration.