Habitat utilization significantly influences the accumulation of chemical pollutants, including trace elements (TEs), in the tissues of large marine organisms. Previous research has demonstrated that sea turtles nesting in the same location may employ distinct foraging strategies. This study investigated the influence of habitat use strategies on the concentrations of 16 TEs in the eggs of green turtles (Chelonia mydas) nesting on the Xisha Islands. The analysis incorporated stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as characteristic elements. Additionally, inter-relationships between TEs were examined. The nesting female green turtles were categorized into two foraging groups based on isotopic signatures, namely oceanic (δ13C values: −21.5 to −17.0 ‰; δ15N values: 7.10 to 12.5 ‰) and neritic (δ13C values: −14.4 to −9.95 ‰ and δ15N values: 5.10 to 10.0 ‰). Different TE patterns were observed in the egg contents of these two groups. The neritic group exhibited elevated levels of V and Cu, which positively corrected with δ13C values. Conversely, the oceanic group displayed higher levels of Zn, Cd, Se, Sn, As and Hg, which positively associated with δ15N values. This distribution pattern is attributed to variations in background TE concentrations in the respective foraging habitats. Additionally, prey items and trophic levels of green turtles may contribute to the observed inter-group differences in TE concentrations (e.g. Zn, As, Se, Sn) found in their eggs, warranting further research. This study provides valuable information about habitat utilization patterns and TE distribution in green turtles nesting on the Xisha Islands. The findings enhance our understanding of TE accumulation mechanisms in turtle tissues and eggs, which is significant for the conservation of this endangered species, the green sea turtle.