Applying Newton's method to a particular system of nonlinear equations we derive methods for the simultaneous computation of all zeros of generalized polynomials. These generalized polynomials are from a function space satisfying a condition similar to Haar's condition. By this approach we bring together recent methods for trigonometric and exponential polynomials and a well-known method for ordinary polynomials. The quadratic convergence of these methods is an immediate consequence of our approach and needs not to be proved explicitly. Moreover, our approach yields new interesting methods for ordinary, trigonometric and exponential polynomials and methods for other functions occuring in approximation theory.
Read full abstract