Time-delay measurements from strong lensing systems combined with spectroscopic measurements of stellar kinematics in deflecting galaxies provide a natural way to infer absolute distances (lensing distances). This means that it can be used to anchor the relative distances of Type Ia supernovae (SNe Ia), and further infer the Hubble constant H0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0$$\\end{document} in a cosmological model-independent way, while avoiding the assumptions of curvature and the equation of state of dark energy. Indeed, observations based on gravitational lensing time delays can measure H0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0$$\\end{document} directly, but usually require assumptions about the specific cosmological models. Meanwhile, this method suffers the mass-sheet degeneracy obstacle. These factors may induce the bias on determination of H0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0$$\\end{document}. However, the inverse distance ladder method we use avoids these assumptions altogether. In this study, we seek for the Pantheon and Pantheon plus datasets and use Gaussian process regression to reconstruct the unanchored distance to match the distance at the redshift of the lens to determine H0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0$$\\end{document}, respectively. Based on the four H0LiCOW lenses, the unanchored distances reconstructed by combining the Pantheon and Pantheon plus datasets yielded H0=80.1-6.9+7.0km/s/Mpc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0=80.1^{+7.0}_{-6.9} \\mathrm {~km/s/Mpc}$$\\end{document} and H0=81.2-7.0+7.1km/s/Mpc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0=81.2^{+7.1}_{-7.0} \\mathrm {~km/s/Mpc}$$\\end{document} with 1σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1 \\sigma $$\\end{document} observational uncertainty, respectively. All the lenses show the measured H0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H_0$$\\end{document} is in good agreement with the local measurement results reported by the SH0ES collaboration within ∼\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim $$\\end{document}1.3σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1.3 \\sigma $$\\end{document} confidence level.
Read full abstract