Peritidal carbonates of the Lower Jurassic (Liassic) Gibraltar Limestone Formation, which form the main mass of the Rock of Gibraltar, are replaced by fine and medium crystalline dolomites. Replacement occurs as massive bedded or laminated dolomites in the lower 100 m of an ≈460‐m‐thick platform succession. The fine crystalline dolomite has δ18Ο values either similar to, or slightly higher than, those expected from Early Jurassic marine dolomite, and δ13C values together with 87Sr/86Sr ratios that overlap with sea‐water values for that time, indicating that the dolomitizing fluid was Early Jurassic sea water. Absence of massive evaporitic minerals and/or evaporite solution‐collapse breccias in these carbonate rocks indicates that the salinity of sea water during dolomitization was below that of gypsum precipitation. The occurrence of peritidal facies, a restricted microbiota and rare gypsum pseudomorphs are also consistent with penesaline conditions (salinity 72–199‰). The medium crystalline dolomite has some δ18Ο and δ13C values and 87Sr/86Sr ratios similar to those of Early Jurassic marine dolomites, which indicates that ambient sea water was again a likely dolomitizing fluid. However, the spread of δ18Ο, δ13C and 87Sr/86Sr values indicates that dolomitization occurred at slightly increased temperatures as a result of shallow (≈500 m) burial or that dolomitization was multistage. These data support the hypothesis that penesaline sea water can produce massive dolomitization in thick peritidal carbonates in the absence of evaporite precipitation. Taking earlier models into consideration, it appears that replacement dolomites can be produced by sea water or modified sea water with a wide range of salinities (normal, penesaline to hypersaline), provided that there is a driving mechanism for fluid migration. The Gibraltar dolomites confirm other reports of significant Early Jurassic dolomitization in the western Tethys carbonate platforms.