This study aims to investigate the effect of sulforaphane (SFN) on hepatic metabolism and gut microbiota in a shifted circadian rhythm (CR) mouse model fed with a high-fat diet (HFD). A shifted CR mouse model with HFD is constructed. Biochemical analyses are used to evaluate the effects of SFN on lipid accumulation and liver function. Targeted metabolomics is used for liver metabolites. Results from hematoxylin and eosin staining and Oil Red O staining show that SFN improves liver lipid accumulation and intestinal inflammatory damage in shifted CR treatment with HFD. The concentrations of amino acid metabolites are increased, and the levels of bile acid metabolites are significantly decreased by SFN treatment. Results from 16S rRNA gene sequencing indicate that SFN modulates gut microbiota, particularly by enhancing beneficial bacteria such as Lachnospiraceae, Lactobacillus, Alistipes, Akkermansia, and Eubacteriaum coprostanoligenes. Correlation analysis confirms a close relationship between intestinal microbiota and hepatic metabolites. SFN significantly regulates CR protein expression in the hypothalamus and liver tissues. SFN alleviates hepatic metabolic disorder and gut microbiota dysbiosis induced by CR disruption under a high-fat diet in a mouse model, indicating the potential of SFN in regulating CR disruption.
Read full abstract