Although abundant evidence has suggested that early-life antibiotic exposure was associated with adipogenesis later in life, limited data were available on the effect of intrauterine antibiotic exposure on infant growth and growth speed. Additionally, few studies have investigated the role of the neonatal gut microbiota in the above association. In this study, we examined the association between intrauterine cumulative antibiotic exposure and infant growth and explored the potential role of the neonatal gut microbiota in the association. 295 mother-child pairs from the Shanghai Maternal-Child Pairs Cohort (MCPC) study were included, and meconium samples and infant growth measurements were assessed. Z-scores of length-for-age, weight-for-age (weight-for-age), and body mass index (BMI)-for-age (BMI-for-age) were calculated. Eighteen common antibiotics were measured in meconium. Multivariable linear regression models were applied to test the interrelationships between antibiotic exposure, diversity indicators, and the relative abundance of selected bacterial taxa from phylum to genus levels from least absolute shrinkage and selection operator (LASSO) and infant growth indicators. The detection rates of the 18 antibiotics, except for chlortetracycline, penicillin, and chloramphenicol, were below 10 %. Penicillin was found to be positively associated with infant growth at birth and with growth speed from 2 to 6 months. The Pielou and Simpson indexes were negatively associated with meconium penicillin. Nominally significant associations between penicillin and the relative abundances of several bacterial taxa from the phyla Proteobacteria, Bacteroidetes, and Firmicutes were found. The Pielou and Simpson indexes were also found to be negatively associated with infant growth. Among taxa selected from LASSO regression, the relative abundances of the phyla Actinobacteria and Firmicutes and order Bifidobacteriales were found to be significantly associated with weight and BMI growth speeds from 2 to 6 months. In conclusion, intrauterine antibiotic exposure can affect infant growth. The neonatal gut microbiota might play a role in the abovementioned association.
Read full abstract