This study investigates the impact of meteorological conditions on unplanned outages of overhead transmission lines (OHTL) in Lithuania’s 0.4–35 kV power grid from January 2013 to March 2023. Data from the Lithuanian electricity distribution network operator and the Lithuanian Hydrometeorological Service were integrated to attribute outage events with weather conditions. A Bayesian change point analysis identified thresholds for these meteorological factors, indicating points at which the probability of outages increases sharply. The analysis reveals that wind gust speeds, particularly those exceeding 21 m/s, are significant predictors of increased outage rates. Precipitation also plays a critical role, with a 15-fold increase in the relative number of outages observed when 3 h accumulated rainfall exceeds 32 mm, and a more than 50-fold increase for 12 h snowfall exceeding 22 mm. This study underscores the substantial contribution of lightning discharges to the number of outages. In forested areas, the influence of meteorological conditions is more significant. Furthermore, the research emphasizes that combined meteorological factors, such as strong winds accompanied by rain or snow, significantly increase the risk of outages, particularly in these forested regions. These findings emphasize the need for enhanced infrastructure resilience and targeted preventive measures to mitigate the impact of extreme weather events on Lithuania’s power grid.
Read full abstract