The effects of xanthan gum (XG) (0, 0.3, 0.6 wt%), guar gum (GG) (0, 0.3, 0.6 wt%) and XG:GG mixtures (0.3-0.3, 0.3-0.6, 0.6-0.3 and 0.6-0.6 wt%) on the physical stability of sodium caseinate (CN) stabilized concentrated O/W emulsions (φoil = 0.6) were examined. The emulsion stability, microstructure, droplets size distribution, and rheological properties were evaluated. The findings showed that with increasing total gum concentration up to 0.6% droplets size and emulsion instability significantly decreased (p < 0.05). The emulsion containing a ternary mixture of CN:XG:GG at total gum concentration (0.6%) with a mixing ratio of 0.3:0.3 XG:GG exhibited the best stability with the highest ESI value (98.3%). Above the critical concentration, an excessive increase in storage modulus led to a significant increase in droplet size and emulsion instability. In brief, concentrated emulsions stabilized by binary and ternary mixtures (CN/XG/GG) may be applicable in special food like heavy cream and as a template for fabricating oleogels.