Transglutaminases (TGases) constitute a family of enzymes that stabilize protein assemblies by gamma-glutamyl-epsilon-lysine crosslinks. The role of tissue transglutaminase (TGase 2) in several pathophysiologies, wound healing applications, biomaterials functionalization, and drug delivery systems provides grounds for its use in tissue engineering. Herein, we initially studied the endogenous TGase activity and expression under normal (skin, duodenum, colon, and small bowel) and pathophysiological (keloid scar) conditions on cadaveric human tissues. Successful inhibition was achieved using low concentrations of BOC-DON-QIV-OMe (0.1 mM and 1 mM for normal skin and keloid scar, respectively), iodoacetamide (0.1 mM and 1 mM for normal skin and keloid scar, respectively), and cystamine dihydrochloride (1 mM and 10 mM for normal skin and keloid scar, respectively), whilst di-BOC-cystamine was found ineffective even at 100 mM concentration. Secondly, the addition of exogenous guinea pig liver transglutaminase (gpTGase) onto the inhibited tissues and collagen scaffolds was studied, and results presented advocate its use as potential tissue adhesive and drug delivery tool. However, the investigation of its crosslinking extent using second harmonic generation microscopy and differentially scanning calorimetry revealed rather poor stabilization function. Overall, our study indicates that TGase 2 has a role as a biological glue to consolidate various micro-structural components of tissues and biomaterials.