Ion exchange is a powerful postsynthesis tool for the design of functional nanomaterials. However, achieving anion exchange while maintaining the original morphology and crystal structure, as well as elucidating the mechanism, remains challenging. Here, we developed an anion-exchange strategy under mild conditions and revealed an unusual ion-exchange mechanism in the semiconductor nanoplatelets. Kinetic studies have demonstrated that the transformation follows first-order kinetics, with the ligand restricting the guest anion from diffusing only in one-dimensional directions. By monitoring the reaction process, we demonstrated that the anion exchange reaction occurs selectively on the polar surface of the NPLs and exhibits asymmetry at the two polar end faces. Theoretical simulations further confirmed that anion exchange began from the chalcogenide-dominated facet. The thermodynamic data suggest that guest ions diffuse into the crystal interior via a direct exchange mechanism. This study provides a pathway for anion exchange and the construction of functional nanocrystals and a platform for studying the optoelectronic behavior of single-sheet heterojunctions.