Abstract

Photogenerated radicals are an indispensable member of the state-of-the-art photochromic material family, as they can effectively modulate the photoluminescence and photothermal conversion performance of radical-induced photochromic complexes. Herein, two novel radical-induced photochromic metal-organic frameworks (MOFs), [Ag(TEPE)](AC) ⋅ 7/4H2O ⋅ 5/4EtOH (1) and [Ag(TEPE)](NC) ⋅ 3H2O ⋅ EtOH (2), are reported. Distinctly different topological networks can be obtained by judiciously introducing alternative π-conjugated anionic guests, including a new topological structure (named as sfm) first reported in this work, describing as 4,4,4,4-c net. EPR data and UV-Vis spectra prove the radical-induced photochromic mechanism. Dynamic photochromism exhibits tunability in a wide CIE color space, with a linear segment from yellow to red for 1, while a curved coordinate line for 2, resulting in colorful emission from blue to orange. Moreover, photogenerated TEPE* radicals effectively activate the near-infrared (NIR) photothermal conversion effect of MOFs. Under 1 W cm-2 808 nm laser irradiation, the surface temperatures of photoproducts 1* and 2* can reach ~160 °C and ~120 °C, respectively, with competitive NIR photothermal conversion efficiencies η=51.8 % (1*) and 36.2 % (2*). This work develops a feasible electrostatic compensation strategy to accurately introduce photoactive anionic guests into MOFs to construct multifunctional radical-induced photothermal conversion materials with tunable photoluminescence behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call