Ras superfamily GTPases are molecular switches that cycle between GDP-bound inactive state and GTP-bound active state to control many signaling pathways. Emerging evidence suggests that several Ras superfamily GTPases, including RhoF, do not follow the classical GDP/GTP exchange cycle; they act as constitutively active GTP-bound proteins due to their fast activities of GDP/GTP exchange (termed as ‘fast-cycling’ GTPases). To understand the molecular basis of the fast-cycling GTPases, we generated a GTPase active recombinant RhoF and examined its function and structure. Two point mutations in the switch I/II regions (Q77L and P45S, corresponding to Q61L and P29S of Rac1) significantly reduced the GTPase activity of RhoF, suggesting a conserved mechanism of GTP hydrolysis between RhoF and other RAS superfamily GTPases. However, in contrary to the previous evidence, RhoF represented a slow GDP/GTP exchange activity that dissociates GDP very slowly on a day-to-week time scale, in our experiment using fluorescently labeled GDP. The slow GDP dissociation was accelerated by Mg2+ chelation and canonical fast-cycling mutations, F44L (corresponding to F28L of Rac1) and P45S. NMR and dynamic light scattering data revealed a multimeric structure of RhoF that can switch between different conformations depending on the GTP/GDP-bound state. Overall, our study suggests that (1) RhoF shares a conserved mechanism of GTP hydrolysis with other RAS superfamily GTPases, but (2) RhoF adopts a unique multimeric structure. Our study also argues that (3) the emerging concept of the fast-cycling GTPases for RhoF should be validated using an alternative assay that does not rely on fluorescently labeled GDP (251 words).
Read full abstract