The complete nucleotide sequences of the mitochondrial genome (mitogenome) of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae), were determined. The 15,521-bp-long G. orientalis mitogenome contains typical gene complement, base composition, and codon usage found in metazoan mitogenomes. The G. orientalis mitogenome contains the third lowest A + T content (70.5%) among the complete insects mt genome sequences. The initiation codon for the G. orientalis COI gene appears to be ATG, instead of the tetranucleotides, which have been postulated to act as initiation codon for Locusta migratoria and some lepidopteran COI genes. The initiation codon for ND2 appears to be GTG, which is rare, but has been designated as an initiator of Tricholepidion gertschi ND2. All anticodons of G. orientalis tRNAs were identical to Drosophila yakuba and L. migratoria. The tRNA Ser(AGN) could not form a stable stem loop structure in the DHU arm as shown in many other insect tRNA Ser(AGN). Phylogenetic analysis of nucleotide sequence information from all mt genes supported a monophyletic Diptera, a monophyletic Lepidoptera, a monophyletic Coleoptera, a monophyletic Mecopterida (Diptera + Lepidoptera), and a monophyletic Endopterygota (Diptera + Lepidoptera + Coleoptera), suggesting that the complete insect mitogenome sequence has a resolving power to the diversification events within Endopterygota. However, the relationships of ancient insect orders were unstable, indicating the limited use of mitogenome information at deeper phylogenetic depth.