Growth is regulated by gene expression variation at different developmental stages of biological processes such as cell differentiation, disease progression, or drug response. In cancer, a stage-specific regulatory model constructed to infer the dynamic expression changes in genes contributing to tissue growth or proliferation is referred as a dynamic growth regulatory network (dGRN). Over the past decade, gene expression data has been widely used for reconstructing dGRN by computing correlations between the differentially expressed genes (DEGs). A wide variety of pipelines are available to construct the GRNs using DEGs and the choice of a particular method or tool depends on the nature of the study. In this protocol, we have outlined a step-by-step guide for the analysis of DEGs using RNA-Seq data, beginning from data acquisition, pre-processing, mapping to reference genome, and construction of a correlation-based co-expression network to further downstream analysis. We have also outlined the steps for the inclusion of publicly available interaction/regulation information into the dGRN followed by relevant topological inferences. This tutorial has been designed in a way that early researchers can refer to for an easy and comprehensive glimpse of methodologies used in the inference of dGRN using transcriptomics data.
Read full abstract