As a countermeasure for suppressing space debris growth (P. Eighler, A. Bade, Chain Reaction of Debris Generation by Collisions in Space—A Final Threat to Spaceflight? in: 40th Congress of the International Astronautical Federation, IAA-89-628, October 1989), the National Aerospace Laboratory of Japan is investigating a satellite capture, repair and removal system for non-cooperative satellites, part of which involves assessing the viability of electrodynamic tether (EDT) technology as an orbital transfer system. In this paper, some results concerning the time required to remove existing satellites, the behavior of flexible tethers during the debris separation phase, and orbital transfer strategies of EDT systems during space debris removal operations are described. From numerical simulations, it is found that EDT systems can transfer satellites from LEO to orbits with a short lifetime within a realistic timeframe. It is also found that the stability of EDT systems is compromised when debris separation occurs both while a tether current is running and when the ratio of the end mass to that of the service satellite is high. To ensure stability, the end mass should be selected from the target debris group with due regard for the maximum possible mass that can be maneuvered safely. Moreover, it is also found that orbital elements (a, e, i) can be changed independently with an adequate current control strategy.
Read full abstract