Biochar can increase ecosystem carbon sequestration by promoting plant growth and stabilizing soil organic carbon (SOC). Biochar produced from forest waste typically varies in particle size and is frequently applied directly for soil enhancement without pulverization. The effects of different biochar particle sizes on sapling growth, woodland soil properties and microbial carbon processes are unclear. This study used field experiments to compare the effects of different biochar particle sizes on sapling growth and microbial metabolic entropy (qCO2). The impacting mechanisms were explored by examining soil physicochemical properties, enzyme activity, and microbial community structure. The application of forest waste (FW) and small particle biochar (SPBC, particle size<2 mm) did not significantly affect sapling growth. Conversely, middle particle biochar (MPBC, particle size 2–10 mm) and large particle biochar (LPBC, particle size>10 mm) reduced sapling biomass by 20.76% and 38.87%, respectively, compared to SPBC. MPBC and LPBC applications resulted in soil nutrient loss (total nitrogen and available phosphorus), inhibiting sapling growth. After 167 days, qCO2 rankings were as follows: FW (30.37 ± 5.18) (P<0.05)> LPBC (20.91 ± 3.62) > CK (16.21 ± 2.71) > MPBC (15.99 ± 3.54) > SPBC (7.8 ± 0.80) (P < 0.05). The rankings of organic carbon retention rates rankings were as follows: SPBC (85.14%) > LPBC (70.35%) > FW (67.31%) > CK (54.53%) > MPBC (51.96%). SPBC increased biochar-soil-microbe interactions, raised the relative proportion of k/r-strategy bacteria, reduced extracellular cellulase activity thus inhibit qCO2. In conclusion, small particle biochar (<2 mm), compared to larger-particle biochar, improves SOC sequestration without negatively affecting sapling growth. Therefore, particle size should be considered as a management indicator for biochar applications in artificial forest practices.
Read full abstract