Abstract

Laurel wilt, a fungal disease (Harringtonia lauricola T.C. Harr., Fraedrich and Aghayeva) spread by the Asian redbay ambrosia beetle [Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae)], presents an imminent threat to North American members of the Lauraceae family, having caused extensive mortality in several species, especially redbay (Persea borbonia L. Spreng). Varying levels of disease resistance have been recorded in redbay under controlled conditions. To investigate if previously monitored putatively resistant field redbays have influenced the regeneration and survival of conspecifics within the surrounding 0.08 ha, a survey was conducted in 2018-19 and compared to similar data collected years prior (2008-09, 2013) along the coasts of Florida, Georgia, and South Carolina, United States. Plots were originally established at six disease-infested study sites around large redbay (>7.5-cm diameter at breast height (1.37 m) (DBH)) that had survived the initial laurel wilt disease epidemic that began in approximately 2007. In 2018-19, a subset of 61 plots within 16 m of the original “survivor” redbay were recorded and compared to previous surveys. Among the original redbay selected for resistance, 22 of 61 (36%) survivors across all sites were alive in 2018 with survival rates varying from 0 to 70% between survey periods (average mortality 3.6%/year). Trees that died in years since 2008-09 had their plots reclassified as susceptible or “suscepts”. Changes in mean quadratic diameter at 1.37 m of redbay plots near survivors were significantly greater than those near suscepts, and in 2018-19, the average diameter of redbay near survivors was 7.62 cm vs. 4.90 cm for suscepts. The diameter distribution of dead and live redbay in the whole population showed a decrease in live individuals surviving past 8 cm DBH in 2018–2019, but 20 of 22 survivor candidate trees were larger than 8 cm DBH. Regeneration was occurring both clonally and sexually and tended to be greater near suscepts, but midstory resprouts per hectare and understory seedlings interacted significantly with the site and the latter differed between sites. These findings indicate that redbay is regenerating in these ecosystems, and disease resistance may allow for increased average tree size for some individuals, but an upper size threshold of around 8 cm DBH may still exist for much of the population. In addition, the importance of site variables in regeneration was apparent, making either local genetic or environmental effects an important topic for future research. Continuing to monitor these survivors while locating new candidates for disease screenings and breeding, preventing the introductions of new strains of H. lauricola, shedding light on the nature of resistance and its heritability, and initiating outplanting trials with resistant germplasm are instrumental steps in bringing redbay back to prominence in its historical range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call