The present study was performed to evaluate the efficacy of selected potential nitrogen-fixing cyanobacterial strain (Anabaenasp.), isolated from rhizospheric soil of rice plants on growth, pigments, N uptake, root architecture, and image-based phenotypic traits of rice crop using co-cultivation approach under controlled sand culture conditions. We studied the beneficial interaction of cyanobacterium to rice using sensor image-based Phenomics approach as well as conventional methods. Co-cultivation experiment revealed that inoculation with Anabaena sp. significantly improved plant growth, chlorophyll, leaf area, % nitrogen, and protein of rice by ~ 70%, ~ 22%, ~ 60%, and ~ 25% under 100% nitrogen input in comparison with un-inoculated control. Further, comparative evaluation revealed superior performance of Anabaena sp. at 100% and 75% N followed by 50% N input improving below-ground parameters as well as phenotypic traits as compared to control treatment. Hence, inoculation performed better with inorganic nitrogen input for overall growth of rice crop. Therefore, cyanobacterial strain can be used as an efficient bio-inoculant for sustainable rice production under integrated nutrient management.
Read full abstract