Identification of factors explaining diversity in plant responses to industrial pollution is crucial for predicting fates of polluted ecosystems. Meta-analysis based on 203 publications demonstrated that plants growing near point polluters showed similar decreases in characters reflecting growth (–13.1%) and reproduction processes (–8.5%). In herbaceous plants, root growth was reduced, while aboveground biomass did not change, because the decrease in leaf size was compensated by an increase in leaf number. In contrast, woody plants demonstrated no changes in allometry and their growth was reduced to a greater extent than growth of herbaceous plants. Raunkiaer’s classification of life forms appeared the best predictor of species’ responses to pollution. Within woody plants, trees and shrubs, but not dwarf shrubs, showed strong decreases in growth and reproduction. Within herbaceous plants, significant growth reduction was observed only in annuals. Longevity of foliage or plant phylogeny did not explain variation in species’ responses. Adverse effects of pollution were stronger in regions with higher temperature and precipitation, hinting that existing pollution loads may become more harmful for plants as climate changes. Relatively minor explanatory value of the characteristics of individual polluters removes one of the principal obstacles to accounting for the effects of pollution in vegetation models and allows extrapolation of the effects observed near point polluters to both regional and global scales. We conclude that losses in productivity of plant communities due to aerial pollution can be approximately estimated on the basis of the life form spectra and climate.
Read full abstract