Loss of phosphorus in seepage may contribute to eutrophication of downstream water bodies. This study examined the potential use of pedogenic ironstone and untreated red mud (bauxite refining residue) as P sorbents in a permeable reactive barrier (PRB) to mitigate such loss. Effects of ironstone and red mud on P sorption (batch), transport (columns), saturated hydraulic conductivity (KS), and growth of common bermudagrass (Cynodon dactylon; greenhouse) were examined. Both materials had sorption maxima of ∼30mmol Pkg-1 or about five times that of a P-enriched sandy soil; however, sorption by red mud greatly increased with decreasing pH. Transport of P through columns of ironstone and red mud (diluted with nonreactive sand) was similar and slower compared to soil+sand. However, when red mud was mixed with soil, increased sorption at lower pH resulted in greater P retention compared to ironstone+soil (76%vs. 13%). Although addition of ironstone to soil up to 20% did not reduce KS, red mud at even 5% did. Soil amendment with red mud increased bermudagrass growth and P uptake. Given long-term neutralization of red mud in an acidic soil and increased P sorption, it may be suitable in a PRB if incorporated at a low rate and/or co-incorporated with a coarser material.