We designed and synthesized a novel platinum complex conjugated with 2-fluorinated 2-deoxyglucoside, named FGC-Pt, to capitalize on the Warburg effect and metabolic trapping properties of [18F]2-deoxy-2-fluoro-d-glucose ([18F]FDG). Then, we conducted comprehensive in vitro and in vivo studies to evaluate the effects of FGC-Pt. In vitro cytotoxicity assays using HeLa cells revealed that FGC-Pt exhibited concentration-dependent cytotoxicity, even though its cytotoxic effect was less pronounced than that of cisplatin. In the evaluation of in vivo biodistribution in mice, platinum concentration in tumors and major organs (muscle, bone, blood, liver, and kidney) and the ratio of platinum concentration in tumors to major organs following the tail vein injection of FGC-Pt and cisplatin suggest that FGC-Pt is more retained in tumors than in other organs and tends to accumulate in tumors more than cisplatin. Furthermore, an in vivo assessment of the antitumor effect conducted in A549 cell-bearing mice demonstrated that FGC-Pt possesses substantial potential as an antitumor agent. It exhibited a tumor growth-inhibitory effect comparable to that of cisplatin while inducing lower toxicity, as evidenced by lower weight loss after administration. Herein, we successfully produced a novel compound with a tumor-growth-inhibitory effect comparable to that of cisplatin and low toxicity.