Remodeling of distal pulmonary arterioles (PAs) associated with marked accumulation of pulmonary artery smooth muscle cells (PASMCs) represents one of the major pathologic features of pulmonary hypertension (PH). We have reported that the transcription factor Twist1 mediates hypoxia-induced PH. However, the mechanism by which endothelial Twist1 stimulates SMC accumulation to distal PAs in PH remains unclear. Here, we have demonstrated that Twist1 overexpression increases the expression of platelet-derived growth factor (PDGFB) in human pulmonary arterial endothelial (HPAE) cells. Hypoxia upregulates the levels of Twist1 and PDGFB in HPAE cells. When we implant hydrogel supplemented with endothelial cells (ECs) on the mouse lung, these ECs form vascular lumen structures and hypoxia upregulates PDGFB expression and stimulates accumulation of αSMA–positive cells in the gel, while knockdown of endothelial Twist1 suppresses the effects. The levels of Twist1 and PDGFB are higher in PAE cells isolated from idiopathic pulmonary arterial hypertension (IPAH) patients compared to those from healthy controls. IPAH patient-derived PAE cells stimulate accumulation of αSMA–positive cells in the implanted gel, while Twist1 knockdown in PAE cells inhibits the effects. Endothelial Twist1-PDGFB signaling plays a key role in αSMA–positive cell proliferation and migration in PH.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access