Trichoptera (caddisfly) phylogeny provides an interesting example of aquatic insect evolution, with rich ecological diversification, especially for underwater architecture. Trichoptera provide numerous critical ecosystem services and are also one of the most important groups of aquatic insects for assessing water quality. The phylogenetic relationships of Trichoptera have been debated for nearly a century. In particular, the phylogenetic position of the “cocoon-makers” within Trichoptera has long been contested. Here, we designed a universal single-copy orthologue and sets of ultraconserved element markers specific for Trichoptera for the first time. Simultaneously, we reconstructed the phylogenetic relationship of Trichoptera based on genome data from 111 species, representing 29 families and 71 genera. Our phylogenetic inference clarifies the probable phylogenetic relationships of “cocoon-makers” within Integripalpia. Hydroptilidae is considered as the basal lineage within Integripalpia, and the families Glossosomatidae, Hydrobiosidae, and Rhyacophilidae formed a monophyletic clade, sister to the integripalpian subterorder Phryganides. The resulting divergence time and ancestral state reconstruction suggest that the most recent common ancestor of Trichoptera appeared in the early Permian and that diversification was strongly correlated with habitat change.
Read full abstract