Abstract

Methamphetamine (MEA) is commonly detected in municipal wastewater. It causes imbalances in the system of neurotransmitters as well as several other adverse effects on human health. The aim of this study was to investigate bioconcentration and depuration rates at an environmentally relevant concentration of 1 µg·L−1 in Aeshna cyanea nymphs exposed to MEA for six days followed by three days of depuration. The metabolomes of nymphs sampled during exposure and depuration were compared using non-targeted screening. Concurrently, a behavioural experiment was run to evaluate the effect of MEA on movement. Since most samples were below the limits of quantification (LOQs) – MEA was quantified in only four out of the 87 samples and only during the first 24 h of exposure at concentrations at LOQ level – we estimated maximal possible bioconcentration factor (BCF) on 0.63 using the LOQ. An MEA metabolite – amphetamine – was not detected in any sample at levels above their LOQs. From 247 up to 1458 significant down- and up-regulated metabolite signals (p ≤ 0.05) were detected by non-targeted screening during initial times of exposure and depuration. Numbers of significant down- and/or up-regulated signals in metabolomes (p ≤ 0.05) calculated for particular sampling times possibly correlated with the size of the effect on movement recorded at the same times. In the MEA treatment, movement was not significantly greater during exposure (p > 0.05) but was significantly lower during depuration (p < 0.05). This study shows how MEA acts on dragonfly nymphs, an ecologically important group of aquatic insects with a high trophic level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call